Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(9): 3486-3498, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33811655

RESUMO

Residence time distribution modeling of integrated perfusion to capture process can elucidate the impact of product quality excursions and filter fouling on monoclonal antibody production. In this case study, a glycosylation inhibitor and fluorescently labeled antibody are applied to the continuous process to study protein quality modulation, perfusion filter fouling, and unit operation hold times. The unit operations were modeled as continuous-stirred tank reactors and the residence time distribution of a small molecule glycan inhibitor and impact on glycosylation were characterized. A fluorescently labeled antibody was applied as a tracer molecule and confirmed the impact of packed cell volume and filter fouling. This study demonstrates how a biologics continuous process can be modeled and characterized through residence time distribution to ensure a robust, well-understood process.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Animais , Células CHO , Cricetulus , Glicosilação , Perfusão
2.
Anal Biochem ; 611: 113842, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32755599

RESUMO

FcγRIIa receptor binding is part of the mechanism of action for many therapeutic antibodies. AlphaScreen® technology and Biolayer Interferometry (BLI) are often used to assess protein-protein interactions. Recently we demonstrated that the presence of aggregates in samples significantly increased binding potency values in AlphaScreen®-based FcRn binding assays, sometimes masking the loss of potency. Even bigger effect of aggregates was observed in an AlphaScreen®-based FcγRIIa binding assay for a monoclonal antibody with strong effector function. To resolve this issue a novel BLI-based FcγRIIa binding assay was developed and qualified. The assay measures association binding responses and calculates the binding potency of the samples relative to the standard using Parallel Line Analysis. The method overcomes interference of aggregates present in the samples, distinguishes different Fc glycosylation patterns, and is stability-indicating. It can be used for sample characterization, drug product release and stability testing.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Receptores de IgG/química , Humanos , Interferometria , Luz
3.
Biotechnol Prog ; 36(5): e3004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32309907

RESUMO

Elemental metals are critical raw material attributes which can impact cell culture performance and associated therapeutic protein product quality profiles. Metals such as copper and manganese act as cofactors and reagents for numerous metabolic pathways which govern cell growth, protein expression, and glycosylation, thus mandating elemental monitoring. The growing complexity of modern cell culture media formulations adds additional opportunities for elemental variance and its associated impact risks. This article describes an analytical technique applying inductively coupled plasma mass spectrometry to characterize a list of common raw materials and media powders used in mammalian cell culture and therapeutic protein production. We aim to describe a method qualification approach suitable for biopharmaceutical raw materials. Furthermore, we present detailed profiles of many common raw materials and discuss trends in raw material subtypes. Finally, a case study demonstrating the impact of an unexpected source of raw material variation is presented along with recommendations for raw material elemental risk profiling and control.


Assuntos
Técnicas de Cultura de Células , Meios de Cultura , Metais/análise , Aminoácidos/análise , Animais , Células CHO , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Cricetinae , Cricetulus , Meios de Cultura/análise , Meios de Cultura/química , Meios de Cultura/normas , Espectrometria de Massas
4.
Anal Chem ; 89(15): 7915-7923, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28635253

RESUMO

Novel cross-links between an oxidized histidine and intact histidine, lysine, or cysteine residues were discovered and characterized from high-molecular weight (HMW) fractions of an IgG1 monoclonal antibody (mAb). The mAb HMW fractions were collected using preparative size-exclusion chromatography (SEC) and extensively characterized to understand the mechanism of formation of the nonreducible and covalently linked portion of the HMWs. The HMW fractions were IdeS digested, reduced, and analyzed by size-exclusion chromatography coupled with mass spectrometry (SEC-MS). The nonreducible cross-links were found to be enriched in the fragment crystallizable (Fc) region of the heavy chain, with a net mass increase of 14 Da. Detailed peptide mapping revealed as many as seven covalent cross-links in the HMW fractions, where oxidized histidines react with intact histidine, lysine, and free cysteine to form cross-links. It is the first time that histidine-cysteine (His-Cys) and histidine-lysine (His-Lys) in addition to histidine-histidine (His-His) cross-links were discovered in monoclonal antibody HMW species. The histidine oxidation hot spots were identified, which include conserved histidine residues His292 and His440 in the Fc region and His231 in the hinge region of the IgG1 mAb heavy chain. Their cross-linking partners include His231, His292, His440, and Cys233 in the hinge region and Lys297 in the Fc region. A cross-linking mechanism has been proposed that involves nucleophilic addition by histidine, cysteine, or lysine residues to the carbonyl-containing histidine oxidation intermediates to form the cross-links.


Assuntos
Anticorpos Monoclonais/química , Histidina/química , Imunoglobulina G/química , Espectrometria de Massas , Peptídeos/análise , Anticorpos Monoclonais/metabolismo , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cisteína/química , Imunoglobulina G/metabolismo , Lisina/química , Peso Molecular , Oxirredução , Mapeamento de Peptídeos/métodos , Peptídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...